Shop Tech Talk January 2010

Bolt Tightening on Machinery. When is tight,tight enough?

Seems like a simple enough question......just look up in a chart the size of the bolt and then use a torque wrench to tighten to the indicated value.
When we tighten a bolt what we are actually trying to do is increase the clamping force between the mating surfaces to a predetermined level. We achieve this in practice by putting tension on the bolt and stretching(preloading) it.

A properlv tightened bolt is one that is stretched (preloaded)so it pulls mating surfaces without exceeding the

 design rating of the bolt or components.The torque applied through the torque wrench is simply a measure of the energy required to spin the bolt along the threads, whereas tension is related to the stretch or elongation of the bolt that provides the clamping force of a joint. Friction forces alone under the nut face and in the threads account for a substantial percentage of the torque applied through the torque wrench.

So torque, as read on the torque wrench, is only a very indirect indication of tension in the bolt! Tension is what we really want to measure and is often called the bolt preload

There are very sophisticated ultrasonic/computer methods and other methods to do this but they are tools used by NASA and other organizations who must know exactly what the bolt tension is. For the average plant use we just need to be aware of the difficulties involved and create a proper bolt tightening procedure.

Below is such a procedure:

1. Know the bolt grade and type to be used
2. Reference a bolt torque table for target values
3. Determine the torque target value and special considerations such as whether you are working with dry or lubricated threads. Lubricated threads call for a lesser torque target value than dry threads. Torquing a lubricated bolt to a dry torque value may result in the failure of the bolt or bolt receiver.
4. Use a calibrated torque wrench for tightening only
5. Tighten the bolts in a balanced pattern when possible
**It is accepted that a bolt preloaded to a fixed value is safer than a bolt simply tightened to an arbitrary value. A preload of about $\mathbf{7 5 \%}$ of the proof load of the bolt material is normally used.

For a bolt tightened with a torque wrench the torque required to provide an initial bolt tension may be approximated by the formula..

$$
\mathbf{T}=\mathbf{K} * \mathbf{D} * \mathbf{P}
$$

Where
$K=$ Torque Coefficient (dimensionless)
$D=$ nominal diameter of bolt (inches)
P = Preload or bolt clamp load(lbs)

Typical K factors

Bolt /Fastener Finish		K
Plain steel(dry)	$0.2+$	
Zinc Plating(dry)	0.21 to 0.33	
Cadmium Plating(dry)	0.15 to 0.20	
Black Oxide Treatment(lightly oiled) 0.16 to 0.19 Moly-disulphide,white lead,wax 0.10 to 0.15		

On the next few pages are 'Suggested Starting Torque Values for Different grades of Bolts'. This information is provided by Portland Bolt \& Manufacturing Co. and is offered solely as a guide.

Also there is a page of explanations following the charts explaining various ASTM and SAE grades of bolts.

The last 2 pages show Hex head Bolt Markings

For much more detailed information on this subject of 'bolts tightening' please see:
http://www.boltscience.com/pages/faq.htm
http://www.surebolt.com/Bolt-Nut.htm http://www.roymech.co.uk/Useful Tables/Screws/Preloading.html

Holland Industrial, 518 West Montgomery Street, Henderson, NC., 27536
Tel: 1-800-232-7541,Fax 1-252-492-2444, E-Mail: sales @ hollandindustrial.com

Suggested Starting Torque Values

ASTM A307

Bolt Size	TPI	$\begin{gathered} \text { Proof Load } \\ \text { (lbs) } \end{gathered}$	$\begin{gathered} \text { Clamp } \\ \text { Load (lbs) } \end{gathered}$	Tightening Torque (ft Ibs)		
				Naxed	Galv	Plain
1/4	20	1145	859	2	4	4
5/16	18	1886	1415	4	9	7
3/8	16	2790	2093	7	16	13
7/16	14	3827	2870	10	26	21
1/2	13	5108	3831	16	40	32
9/16	12	6552	4914	23	58	46
5/8	11	8136	6102	32	79	64
3/4	10	12024	9018	56	141	113
7/8	9	15200	11400	83	208	166
1	8	20000	15000	125	313	250
1 1/8	7	25200	18900	177	443	354
1 1/4	7	32000	24000	250	625	500
1 3/8	6	38100	28575	327	819	655
1 1/2	6	46400	34800	435	1088	870
1 3/4	5	68400	51300	748	1870	1496
2	$41 / 2$	90000	67500	1125	2813	2250
2 1/4	41/2	117000	87750	1645	4113	3291
$21 / 2$	4	144000	108000	2250	5625	4500
2 3/4	4	177480	133110	3050	7626	6101
3	4	214920	161190	4030	10074	8060
$31 / 4$	4	255600	191700	5192	12980	10384
$31 / 2$	4	299880	224910	6560	16400	13120
3 3/4	4	347760	260820	8151	20377	16301
4	4	398880	299160	9972	24930	19944

SAE Grade 2

Bolt Size	TPI	$\begin{array}{\|c\|} \hline \text { Proof Load } \\ \text { (lbs) } \\ \hline \end{array}$	$\begin{gathered} \text { Clamp } \\ \text { Load (lbs) } \end{gathered}$	Tightening Torque (ft Ibs)		
				Naxed	Galv	Plain
1/4	20	1750	1313	3	7	5
5/16	18	2900	2175	6	14	11
3/8	16	4250	3188	10	25	20
7/16	14	5850	4388	16	40	32
1/2	13	7800	5850	24	61	49
9/16	12	10000	7500	35	88	70
5/8	11	12400	9300	48	121	97
3/4	10	18400	13800	86	216	173
7/8	9	15200	11400	83	208	166
1	8	20000	15000	125	313	250
1 1/8	7	25200	18900	177	443	354
1 1/4	7	32000	24000	250	625	500
1 3/8	6	38100	28575	327	819	655
1 1/2	6	46400	34800	435	1088	870

ASTM A325 / ASTM A449 / SAE Grade 5

Bolt Size	TPI	Proof Load(lbs)	$\begin{array}{\|c} \hline \text { Clamp } \\ \text { Load (lbs) } \\ \hline \end{array}$	Tightening Torque (ft lbs)		
				Naxed	Galv	Plain
1/4	20	2700	2025	4	11	8
5/16	18	4450	3338	9	22	17
3/8	16	6600	4950	15	39	31
7/16	14	9050	6788	25	62	49
1/2	13	12050	9038	38	94	75
9/16	12	15450	11588	54	136	109
5/8	11	19200	14400	75	188	150
3/4	10	28400	21300	133	333	266
7/8	9	39250	29438	215	537	429
1	8	51500	38625	322	805	644
1 1/8	7	56450	42338	397	992	794
$1 \begin{array}{ll}1 / 4\end{array}$	7	71700	53775	560	1400	1120
1 3/8	6	85450	64088	734	1836	1469
1 1/2	6	104000	78000	975	2438	1950
1 3/4	5	104500	78375	1143	2857	2286
2	$41 / 2$	137500	103125	1719	4297	3438
2 1/4	$41 / 2$	178750	134063	2514	6284	5027
$21 / 2$	4	220000	165000	3438	8594	6875
$23 / 4$	4	271150	203363	4660	11651	9321
3	4	328350	246263	6157	15391	12313

ASTM A193 B7

Bolt Size	TPI	Proof Load (lbs)	$\begin{gathered} \text { Clamp } \\ \text { Load (lbs) } \end{gathered}$	Tightening Torque (ft lbs)		
				Naxed	Galv	Plain
1/4	20	3350	2513	5	13	10
5/16	18	5500	4125	11	27	21
3/8	16	8150	6113	19	48	38
7/16	14	11150	8363	30	76	61
1/2	13	14900	11175	47	116	93
9/16	12	19100	14325	67	168	134
5/8	11	23750	17813	93	232	186
3/4	10	35050	25288	164	411	329
7/8	9	48500	36375	265	663	530
1	8	63650	47738	398	995	796
1 1/8	7	80100	60075	563	1408	1126
1 1/4	7	101750	76313	795	1987	1590
$13 / 8$	6	121300	90975	1042	2606	2085
$1 \begin{array}{ll}1 / 2\end{array}$	6	147550	110663	1383	3458	2767
$13 / 4$	5	199500	149625	2182	5455	4364
2	$41 / 2$	262500	196875	3281	8203	6563
2 1/4	41/2	341250	255938	4799	11997	9598
$21 / 2$	4	420000	315000	6563	16406	13125
2 3/4	4	468500	351263	8050	20124	16100
3	4	567150	425363	10634	26585	21268
$31 / 4$	4	674500	505875	13701	34252	27402
$31 / 2$	4	791350	593513	17311	43277	34622
3 3/4	4	917700	688275	21509	53771	43017
4	4	1052600	789450	26315	65788	52630

ASTM A354-BD / ASTM A490 / SAE Grade 8

Bolt Size	TPI	$\begin{array}{\|c\|} \hline \text { Proof Load } \\ \text { (lbs) } \\ \hline \end{array}$	$\begin{gathered} \text { Clamp } \\ \text { Load (lbs) } \end{gathered}$	Tightening Torque	
				Naxed	Plain
1/4	20	3800	2850	6	12
5/16	18	6300	4725	12	25
3/8	16	9300	6975	22	44
7/16	14	12750	9563	35	70
1/2	13	17050	12788	53	107
9/16	12	21850	16388	77	154
5/8	11	27100	20325	106	212
3/4	10	40100	30075	188	376
7/8	9	55450	41588	303	606
1	8	72700	54525	454	909
1 1/8	7	91550	68663	644	1287
1 1/4	7	120000	90000	938	1875
1 3/8	6	138600	103950	1191	2382
1 1/2	6	168600	126450	1581	3161
$13 / 4$	5	228000	171000	2494	4988
2	41/2	300000	225000	3750	7500
$21 / 4$	41/2	390000	292500	5484	10969
2 1/2	4	480000	360000	7500	15000
2 3/4	4	517650	388238	8897	17794
3	4	626850	470138	11753	23507
$31 / 4$	4	745500	559125	15143	30286
$31 / 2$	4	874650	655988	19133	38266
3 3/4	4	1014300	760725	23773	47545
4	4	1052600	789450	26315	52630

Notes:

1. Values calculated using industry accepted formula $T=K D P$ where $T=$ Torque, $K=$ torque coefficient (dimensionless), $\mathrm{D}=$ nominal diameter (inches), $\mathrm{P}=$ bolt clamp load, lb .
2. K values: waxed (e.g. pressure wax as supplied on high strength nuts) $=.10$, hot dip galvanized $=.25$, and plain non-plated bolts (as received) $=.20$.
3. Torque has been converted into ft/lbs by dividing the result of the formula by 12
4. All calculation are for Coarse Thread Series (UNC).
5. Grade 2 calculations only cover fasteners $1 / 4 "-3 / 4^{\prime \prime}$ in diameter up to 6 " long; for longer fasteners the torque is reduced significantly.
6. Clamp loads are based on 75% of the minimum proof loads for each grade and size.
7. Proof load, stress area, yield strength, and other data is based on IFI 7th Edition (2003) Technical Data N-68, SAE J429, ASTM A307, A325, A354, A449, and A490.
[^0]
Bolt Grade Explanations on Previous Charts

ASTM A307:
The ASTM A307 specification covers carbon steel bolts and studs ranging from 1/4" through 4" diameter. This is your everyday, run of the mill bolt specification often manufactured using $\mathbf{A} 36$ round bar. There are three grades A, B, and C^{*} which denote tensile strength, configuration, and application.

SAE Grade 2
The significant difference between SAE J429, Grade 2, and ASTM A307, Grade A, is the ultimate tensile strength rating for bolts between $1 / 4$ inch and $3 / 4$ inch diameters. SAE J429, Grade 2, has a tensile strength requirement of $\mathbf{7 4 , 0 0 0}$ PSI and the ASTM A307 Grade A only has a tensile strength requirement of $\mathbf{6 0 , 0 0 0}$ PSI. This means that SAE bolts have a 23% higher strength requirement than the ASTM bolts in the $1 / 4$ through $3 / 4$ diameter range.
ASTM A325 / ASTM A449 / SAE Grade 5
The ASTM A325 specification covers high strength heavy hex structural bolts from $1 / 2$ " diameter through 1-1/2" diameter. These bolts are intended for use in structural connections and therefore have shorter thread lengths than standard hex bolts.
ASTM A449 covers headed bolts, rods, and anchor bolts in diameters ranging from 1/4" through $3^{\prime \prime}$ inclusive. It is a medium strength bolt manufactured from a medium carbon or alloy steel that develops its mechanical values through a heat treating process. It is intended for general engineering applications.

ASTM A193 B7

Originally approved in 1936, this specification is heavily utilized in petroleum and chemical construction applications. The ASTM standard covers alloy steel and stainless steel bolting materials for high temperature service. This specification includes fasteners intended for use in pressure vessels, valves, flanges, and fittings. Although, this material is often available in national coarse (UNC) thread pitches, if being used in traditional applications, threads are specified 8 threads per inch (tpi) for diameters above one inch. B7 Alloy steel, AISI 4140/4142 quenched and tempered

ASTM A354-BD / ASTM A490 / SAE Grade 8
A354 grade BD bolts are higher in strength than A354 grade BC and equal in strength to ASTM A490 bolts. Unlike ASTM A490 however, the A354 BD specification is unrestricted in its configuration. Since A490 bolts are heavy hex structural bolts and do not exceed 1-1/2" diameter, specification A354 BD should be considered for anchor bolts, threaded rods, other styles of headed bolts, and bolts larger than 1-1/2" diameter where similar mechanical properties are desired. A354 grade BD does not require a magnetic particle test as is required by the $\mathbf{A} 490$ specification.
The ASTM A490 specification covers quenched and tempered, alloy steel, heavy hex structural bolts from $1 / 2 "$ diameter through $1 / 2 "$ diameter with a minimum 150 ksi tensile. These bolts are intended for use in structural connections and therefore have shorter thread lengths than standard hex bolts. Refer to the Structural Bolts page of our site for thread lengths and other related dimensions. A490 bolts are similar in application and dimensions to A325 heavy hex structural bolts but are made from an alloy steel rather than a medium carbon steel, resulting in a higher strength fastener.
SAE grade 8 bolts are made from a medium carbon alloy steel. Grade 8 bolts are significantly stronger than an A325. An ASTM specification with similar strength properties to grade 8 is ASTM A490.
SAE (Society of Automotive Engineers) establishes specifications covering fasteners intended for use in automotive, OEM, and equipment applications, while ASTM (American Society for Testing and Materials) provides specifications for construction fasteners.

Hex Head Bolt Markings

The strength and type of steel used in a bolt is supposed to be indicated by a raised mark on the head of the bolt. The type of mark depends on the standard to which the bolt was manufactured. Most often, bolts used in machinery are made to SAE standard J429, and bolts used in structures are made to various ASTM standards. The tables below give the head markings and some of the most commonly-needed information concerning the bolts. For further information, see the appropriate standard.

SAE Bolt Designations

SAE Grade No.	Size range	Tensile strength, ksi	Material

ASTM Bolt Designations

ASTM standard	Size range	Tensile strength, ksi	Material	Head marking
A307	1/4 thru 4	60	Low carbon steel	
$\begin{gathered} \text { A325 } \\ \text { Type } 1 \end{gathered}$	$\begin{gathered} 1 / 2 \text { thru } 1 \\ 1-1 / 8 \text { thru } 1-1 / 2 \end{gathered}$	$\begin{aligned} & 120 \\ & 105 \end{aligned}$	Medium carbon steel, quenched \& tempered	
$\begin{gathered} \text { A325 } \\ \text { Type } 2 \end{gathered}$	$\begin{gathered} 1 / 2 \text { thru } 1 \\ 1-1 / 8 \text { thru } 1-1 / 2 \end{gathered}$	$\begin{aligned} & 120 \\ & 105 \end{aligned}$	Low carbon martensite steel, quenched \& tempered	
$\begin{aligned} & \text { A325 } \\ & \text { Type } 3 \end{aligned}$	$\begin{gathered} 1 / 2 \text { thru } 1 \\ 1-1 / 8 \text { thru } 1-1 / 2 \end{gathered}$	$\begin{aligned} & 120 \\ & 105 \end{aligned}$	Weathering steel, quenched \& tempered	
A449	$\begin{gathered} 1 / 4 \text { thru } 1 \\ 1-1 / 8 \text { thru } 1-1 / 2 \\ 1-3 / 4 \text { thru } 3 \end{gathered}$	$\begin{gathered} 120 \\ 105 \\ 90 \end{gathered}$	Medium carbon steel, quenched \& tempered	
$\begin{gathered} \text { A490 } \\ \text { Type } 1 \end{gathered}$	1/4 thru 1-1/2	150	Alloy steel, quenched \& tempered	
$\begin{gathered} \text { A490 } \\ \text { Type } 3 \end{gathered}$	1/4 thru 1-1/2	150	Weathering steel, quenched \& tempered	+

Often one will find "extra" marks on a bolt head--marks in addition to those shown above. Usually these marks indicate the bolt's manufacturer.

ASTM A325 Type 2 bolts have been discontinued, but are included above because they can be found in existing structures. Their properties can be important in failure investigations.

While the bolts shown above are among the most common in the U.S., the list is far from exhaustive. In addition to the other bolts covered by the SAE and ASTM standards, there are a host of international standards, of which ISO is perhaps the most well known.

[^0]: The above estimated torque calculations are only offered as a guide. Use of its content by anyone is the sole responsibility of that person and they assume all risk. Due to many variables that affect the torque-tension relationship like, human error, surface texture, lubrication etc, the only way to determine the correct torque is through experimentation under actual joint and assembly conditions.

